

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Advanced Data Structures & Algorithm Analysis (23CS0507) Regulation: R23

Course & Branch: B.Tech – CSE,CIC,CCC,CAI,CSM,CAD

Year & Sem: II Year & I Sem

UNIT-I INTRODUCTION, AVL TREES, B-TREES

1	a)	What do you mean by algorithm? List some of the properties of it.	[L1] [CO1]	[2M]
	b)	Simplify steps involved in performance analysis.	[L2] [CO1]	[2M]
	c)	Define Balance Factor.	[L2] [CO1]	[2M]
	d)	What is an AVL tree? Give one example.	[L1] [CO1]	[2M]
	e)	What is B-Tree? Give one example.	[L1] [CO1]	[2M]
2	a)	Analyze space complexity and time complexity in detail with example.	[L4] [CO1]	[2M]
	b)	Illustrate an algorithm for Finding sum of natural number.	[L2] [CO1]	[5M]
3		What is Asymptotic Notation? Explain different types of notations with examples.	[L2] [CO1]	[10M]
4		Discuss briefly with suitable example about Big 'O' notation and Theta notation ' Θ '.	[L2] [CO1]	[10M]
5	a)	Discuss factors affecting the time complexity.	[L3] [CO1]	[5M]
	b)	Compare between Priori analysis and Posteriori analysis.	[L5] [CO1]	[5M]
6		Explain different AVL rotations with suitable examples.	[L2] [CO1]	[10M]
7	a)	Write the applications and operations of an AVL tree.	[L3] [CO1]	[5M]
	b)	Define the Balance Factor of a node in an AVL tree. How is it calculated, and what is its significance?	[L2] [CO1]	[5M]
8		Construct an AVL Tree by inserting numbers from 1 to 8.	[L6] [CO1]	[10M]
9	a)	Write the applications and Operations of the B-Tree.	[L3] [CO1]	[5M]
	b)	Elaborate the B-Tree Deletion Operation with suitable example.	[L3] [CO1]	[5M]
10		Construct a B-Tree of order 3 by inserting numbers 1 to 10.	[L3] [CO1]	[10M]
	1			

UNIT –II

HEAP TREES, GRAPHS, DIVIDE AND CONQUER

1	a)	Define Heapify.	[L2][CO2]	[2M]
	b)	What is Articulation point?	[L1][CO2]	[2M]
	c)	What is directed and undirected graph?	[L1][CO2]	[2M]
	d)	Write the applications of Heap tree.	[L3][CO2]	[2M]
	e)	Construct Strassen's 2×2 matrix.	[L3][CO2]	[2M]
2	a)	Explain in detail about operations of Heap Tree.	[L2][CO2]	[5M]
	b)	Construct Max Heap Tree for the following elements 32, 15, 20, 30, 12, 25, 16.	[L3][CO2]	[5M]
3		Draw the Spanning Tree for the given graph using DFS and BFS algorithm.	[L1][CO2]	[10M]
4	a)	Define Connected components and Bi-connected components along with Applications	[L2][CO2]	[5M]
	b)	Explain Graph representations with suitable example.	[L2][CO2]	[5M]
5		Explain Graph Traversal techniques with neat example.	[L2][CO2]	[10M]
6	a)	Compare between Min heap and Max heap.	[L5][CO2]	[5M]
	b)	Sort the records with the following index values in the ascending order using Quick Sort algorithm. 9, 7, 5, 11, 12, 2, 14, 3, 10, 6.	[L2][CO2]	[5M]
7		Analyze the working strategy of merge sort and illustrate the process of Merge Sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13	[L4][CO2]	[10M]
8		Summarize an algorithm for quick sort. Provide a complete analysis of quick sort for given set of numbers 12, 3, 18, 21, 4, 55, 64, 77 and 76.	[L3][CO2]	[10M]
9	a)	Explain about Convex Hull with example.	[L2][CO2]	[5M]
	b)	Explain the General Method of Divide and Conquer Method.	[L2][CO2]	[5M]
10		$A = \begin{bmatrix} 9 & 4 & 6 & 7 \\ 7 & 8 & 1 & 4 \\ 4 & 3 & 2 & 6 \\ 5 & 3 & 0 & 2 \end{bmatrix} B = \begin{bmatrix} 7 & 6 & 2 & 1 \\ 3 & 9 & 0 & 3 \\ 2 & 5 & 2 & 9 \\ 3 & 2 & 4 & 7 \end{bmatrix}$ Create Stassen's matrix multiplication on A and B. Find the resultant matrix.	[L6][CO2]	[10M]

UNIT –III

GREEDY METHOD, DYNAMIC PROGRAMMING

1	0)	Differentiate gready and dynamic programming		[2]
1	a)	Differentiate greedy and dynamic programming.	[L2][CO2]	[2M]
	b)	Define knapsack problem using greedy approach.	[L2][CO2]	[2M]
	c)	What is Spanning Tree?	[L1][CO2]	[2M]
	d)	What is 0/1 knapsack problem.	[L1][CO2]	[2M]
	e)	Define Job sequencing with deadlines.	[L2][CO2]	[2M]
2		Elaborate job sequencing with deadlines by using greedy method where	[L6][CO3]	[10M]
		given the jobs, their deadlines and associated profits as shown below. Calculate maximum earned profit.		
		Jobs J1 J2 J3 J4 J5 J6		
		Deadlines 5 3 3 2 4 2		
		Profits 200 180 190 300 120 100		
3		Construct an optimal solution for Knapsack problem, where n=7,M=15 and	[L3][CO3]	[10M]
		(p1,p2,p3,p4,p5,p6,p7) = (10,5,15,7,6,18,3) and $(w1,w2,w3,w4,w5,w6,w7) =$][- 0+]	L
		(2,3,5,7,1,4,1) by using Greedy strategy.		
4		Implement the Single Source Shortest Path using Dijkstra's algorithm for the	[L4][CO3]	[5M]
		given graph.		
		4 2 9		
		0 11 8 4 14 4		
		8 7 6 10		
		7 1 6 2 5		
5		What is Minimum Cost Spanning Tree? Implement the Kruskal's algorithm	[L1][CO3]	[10M]
		and Prims algorithm.		
		(b) 8 (c) 7 (d)		
		4		
		$\begin{bmatrix} a \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 7 \end{bmatrix}$ $\begin{bmatrix} i \\ 6 \end{bmatrix}$ $\begin{bmatrix} 14 \\ e \end{bmatrix}$		
		8 (h) (f) 10		
6	a)	$\begin{array}{c} (h) \\ 1 \\ \hline \\ 2 \\ \hline \\ \hline$	[L2][CO3]	[5M]
	a) b)	Build any one application of dynamic programming with an example.	[L2][C03] [L6][C01]	[5M]
7	0)			
'		Solve Single Source Shortest Paths problem using dynamic programming.	[L3][CO3]	[5M]
		TB E		
		6/ 10 3/		
		(A) 4 3		
		· · · · · · · · · · · · · · · · · · ·		
		D		
		<u> </u>		

Cou	ırse (Code: 23CS0507	R	23
8	a)	Explain 0/1 knapsack problem by using dynamic programming with an examples.	[L2][CO3]	[5M]
	b)	Measure the String Editing problem with example.	[L5][CO3]	[5M]
9		Construct an algorithm for All pairs of shortest path and calculate shortest path betweenall pairs of vertices by using dynamic programming method for the following graph.	[L6][CO3]	[10M]
10		Analyze the minimum cost tour for given problem in travelling sales person Concepts by using dynamic programming. 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +	[L4][CO3]	[10M]

UNIT –IV BACKTRACKING, BRANCH AND BOUND

1	a)	Define Backtracking.	[L2][CO2]	[2M]
	b)	What is Graph coloring?	[L1][CO2]	[2M]
	c)	Solve 4-Queens problem.	[L2][CO2]	[2M]
	d)	What is Branch and Bound?	[L1][CO2]	[2M]
	e)	State the Container problem.	[L2][CO2]	[2M]
2	a)	Consider a set $S = \{5,10,12,13,15,18\}$ and $d=30$. Solve it for obtaining Sum of Subset using Backtracking method.	[L6][CO4]	[5M]
	b)	Describe how the backtracking method is applied to solve the 8-Queens problem.	[L3][CO4]	[5M]
3		Recall the Graph Coloring. Explain in detail about graph coloring with an	[L5][CO4]	[10M]
		example.		
4		Analyze the least cost search approach in branch and bound.	[L4][CO4]	[10M]
5		Construct the State space tree for the profits= $\{3,5,6,10\}$ and	[L3][CO4]	[10M]
		weights= $\{2,3,4,5\}$,n=4 and m=8 (Capacity). Apply the backtracking for $0/1$		
		Knapsack and also find the Maximum profit.		
6	a)	Explain the principles of FIFO branch and bound.	[L3][CO4]	[5M]
	b)	Explain the principles of LIFO branch and bound.	[L2][CO4]	[5M]
7		Find the LC branch and bound solution for the traveling sale person problem whose cost matrix is as follows:	[L4][CO4]	[10M]
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
8		Simplify 0/1 knapsack problem and design an algorithm of LC Branch and Bound and find the solution for the knapsack instance of $n = 4$,(p1, p2, p3, p4) = (10, 10, 12, 18), (w1,w2, w 3, w4) = (2, 4, 6, 9) and M = 15.	[L4][CO4]	[10M]
9		Construct the LC branch and bound search. Consider knapsack instance n=4 with capacity M=15 such that $pi=\{10,10,12,18\}$, wi= $\{2,4,6,9\}$ apply FIFO branch and bound technique.	[L6][CO4]	[10M]
10	a)	Describe the general method of branch and bound.	[L1][CO4]	[5M]
	b)	Explain the role of the state-space tree in branch and bound techniques.	[L4][CO4]	[5M]

UNIT –V NP HARD AND NP COMPLETE PROBLEMS

1	a)	Define P class and NP Class.	[L2][CO5]	[2M]
	b)	What are NP complete and NP Hard?	[L1][CO5]	[2M]
	c)	What is Chromatic Number?	[L1][CO5]	[2M]
	d)	What is deterministic algorithm?	[L1][CO5]	[2M]
	e)	What is non-deterministic problem?	[L1][CO5]	[2M]
2		Construct the non-deterministic algorithms with suitable example.	[L3][CO5]	[10M]
3		Build the non-deterministic sorting algorithm and also analyze its complexity.	[L6][CO5]	[10M]
4		Determine the classes NP-hard and NP-complete problem with example.	[L5][CO5]	[10M]
5		State and Explain Cook's theorem.	[L2][CO5]	[10M]
6		Illustrate the Satisifiability problem and write the algorithm.	[L4][CO5]	[10M]
7		Explain Traveling Salesperson Decision Problem With example.	[L4][CO5]	[10M]
8	a)	Explain about Chromatic Number Decision Problem in detail.	[L4][CO5]	[05M]
	b)	Explain about Clique Decision Problem in detail.	[L4][CO5]	[05M]
9	a)	Explain why Clique Decision Problem is NP-Hard. Explain.	[L4][CO5]	[05M]
	b)	Explain why Traveling Salesperson Decision Problem is NP-Hard. Explain.	[L3][CO5]	[05M]
10	a)	Explain Scheduling Identical Processors in NP Hard Scheduling Problem.	[L4][CO5]	[05M]
	b)	Describe Job Shop Scheduling in NP Hard Scheduling Problem.	[L1][CO5]	[05M]

Prepared by CSE and CSIT Department